Advertisements
Advertisements
प्रश्न
उत्तर
Then, x = t – 2
Difference both sides
dx = dt
Now, integral becomes
\[I = \int\left( t - 2 \right)\sqrt{t}dt\]
\[ = \int\left( t^\frac{3}{2} - 2 t^\frac{1}{2} \right)dt\]
\[ = \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - 2\frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{5} t^\frac{5}{2} - \frac{4}{3} t^\frac{3}{2} + C\]
\[ = \frac{2}{5} \left( x + 2 \right)^\frac{5}{2} - \frac{4}{3} \left( x + 2 \right)^\frac{2}{3} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`