Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\left( \frac{1 + \ tanx}{1 - \ tanx} \right)dx\]
\[ = \int\left( \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} \right)dx\]
\[ = \int\left( \frac{\cos x + \sin x}{\cos x - \sin x} \right)dx\]
\[Putting\ \cos\ x - \sin x = t\]
\[ \Rightarrow \left( - \sin x - \cos x \right)dx = dt\]
\[ \Rightarrow \left( \sin x + \cos x \right)dx = - dt\]
\[ \therefore I = - \int\frac{1}{t}dt\]
\[ = - \text{ln }\left| t \right| + C\]
\[ = - \text{ln }\left| \cos x - \sin x \right| + C \left[ \because t = \cos x - \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`