Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\cos 3x - \cos x}dx\]
\[ = \int\frac{1}{4 \cos^3 x - 4\ cosx}dx \left[ \because \cos 3x = 4 \cos {}^3 x - 3 \cos x \right]\]
\[ = \int\frac{1}{4\cos x\left( \cos^2 x - 1 \right)}dx\]
\[ = \frac{- 1}{4}\int\frac{1}{\cos x \sin^2 x}dx\]
\[ = \frac{- 1}{4}\int\left( \frac{\sin^2 x + \cos^2 x}{\cos x \sin^2 x}dx \right)\]
\[ = \frac{- 1}{4}\left[ \int\sec\ x\ dx + \int\text{cot x cosec}\ x\ dx \right]\]
\[ = \frac{- 1}{4}\left( \ln \left| \ sec\ x + \ tan\ x \right| - cosec\ x \right) + C\]
\[ = \frac{1}{4}\left( \text{cosec x} - \ln\left| \sec x + \tan x \right| \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`