मराठी

∫ ( X − 3 ) √ X 2 + 3 X − 18 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[\text{ We  express x - 3} = A\left( \frac{d}{d x}\left( x^2 + 3x - 18 \right) \right) + B\]
\[x - 3 = A(2x + 3) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[1 = 2A \text{ and }- 3 = 3A + B\]
\[or A = \frac{1}{2} \text{ and B }= - \frac{9}{2} \]
\[ \therefore I = \int\left( \frac{1}{2}\left( 2x + 3 \right) - \frac{9}{2} \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2}\int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }- \frac{9}{2}\int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2} I_1 - \frac{9}{2} I_2 . . . (1)\]
\[\text{ Now,} I_1 = \int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} dx\]
\[ \text{ Let x}^2 + 3x - 18 = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 2x + 3 \right)dx = du\]
\[ \therefore I_1 = \int\sqrt{u}du\]
\[ = \frac{2}{3} u^\frac{3}{2} + c_1 \]
\[ = \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \int\sqrt{x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 18} \text{  dx }\]
\[ = \int\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} dx\]
\[ \text{ Let} \left( x + \frac{3}{2} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = du\]
\[ \therefore I_2 = \int\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} du\]
\[ = \frac{u}{2}\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text { log }\left| u + \sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{x + \frac{3}{2}}{2}\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get }\]
\[ \therefore I = \frac{1}{2}\left( \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 \right) - \frac{9}{2}\left( \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 \right)\]
\[ = \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]
\[\text{ Hence,} \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }= \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\log\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 11 | पृष्ठ १५९

संबंधित प्रश्‍न

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×