Advertisements
Advertisements
प्रश्न
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{dx}{2\sqrt{x}} = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2\text{ dt}\]
\[\text{ Putting}\ \sqrt{x} = t \text{ and} \frac{dx}{\sqrt{x}} = \text{ 2 dt }\]
\[ \therefore I = 2\int \sec^2 + dt\]
\[ = 2 \tan t + C\]
\[ = 2 \tan \left( \sqrt{x} \right) + C \left( \because t = \sqrt{x} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`