Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
उत्तर
Given,
`I=int_0^3dx/(9+x^2)=int_0^3dx/(3^2+x^2)`
We know that, `intdx/(x^2+a^2)=1/atan^(-1)(x/a)+C`
Therefore,
`I=int_0^3dx/(x^2+3^2)`
`=1/3[tan^(-1)(x/3)]_0^3`
`=1/3[tan^(-1)1-tan^(-1)0]`
`=1/3[pi/4-0]`
`=pi/12`
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Write a value of
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`