Advertisements
Advertisements
प्रश्न
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
उत्तर
\[\text{ Let I } = \int\frac{\log x}{x} dx\]
\[\text{ and }\text{ let} \log x = t\]
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int t \cdot dt\]
\[ = \frac{t^2}{2} + C\]
\[ = \frac{\left( \log x \right)^2}{2} + C \left( \because t = \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`