मराठी

∫ a X 2 + B X + C ( X − a ) ( X − B ) ( X − C ) D X , Where A, B, C Are Distinct - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]
बेरीज

उत्तर

We have,

\[I = \int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx\]

\[\text{Let }\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} = \frac{A}{x - a} + \frac{B}{x - b} + \frac{C}{x - c}\]

\[ \Rightarrow a x^2 + bx + c = A\left( x - b \right) \left( x - c \right) + B \left( x - c \right)\left( x - a \right) + C\left( x - a \right) \left( x - b \right)\]

\[ \Rightarrow a x^2 + bx + c = A\left[ x^2 - \left( b + c \right)x + bc \right] + B\left[ x^2 - \left( c + a \right)x + ca \right] + C\left[ x^2 - \left( a + b \right)x + ab \right]\]

\[ \Rightarrow a x^2 + bx + c = \left( A + B + C \right) x^2 - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right]x + Abc + Bca + Cab\]

Equating the coefficients on both sides, we get

\[a = A + B + C ...............(1)\]

\[b = - \left[ A\left( b + c \right) + B\left( c + a \right) + C\left( a + b \right) \right] ..................(2)\]

\[c = Abc + Bca + Cab .................(3)\]

Solving (1), (2) and (3), we get

\[A = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\]

\[B = \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\]

\[C = \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\]

\[ \therefore I = \int\left[ \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)} \times \frac{1}{x - a} + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)} \times \frac{1}{x - b} + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)} \times \frac{1}{x - c} \right] dx\]

\[ = \frac{a^3 + ab + c}{\left( a - b \right)\left( a - c \right)}\log \left| x - a \right| + \frac{a b^2 + b^2 + c}{\left( b - a \right)\left( b - c \right)}\log \left| x - b \right| + \frac{a c^2 + bc + c}{\left( c - a \right)\left( c - b \right)}\log \left| x - c \right| + K\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 15 | पृष्ठ १७६

संबंधित प्रश्‍न

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×