मराठी

Evaluate the following: d∫12dx(x-1)(2-x) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

बेरीज

उत्तर

Let I = `int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

= `int_1^2 ("d"x)/sqrt(2x - x^2 - 2 + x)`

= `int_1^2 ("d"x)/sqrt(-x^2 + 3x - 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 9/4 - 9/4 + 2))`  .....[Making perfect square]

= `int_1^2 ("d"x)/sqrt(-[(x - 3/2)^2 - 1/4])`

= `int_1^2 ("dx)/sqrt(1/4 - (x - 3/2)^2)`

= `int_1^2 ("d"x)/sqrt((1/2)^2 - (x - 3/2)^2)`

= `[sin^-1 ((x - 3/2)/(1/2))]_1^2`

= `[sin^-1 ((2x - 3)/1)]_1^2`

= `sin^-1 (4 - 3) - sin^-1 (2 - 3)`

= `sin^-1 (1) - sin^-1 (-1)`

= `sin^-1 (1) + sin^-1 (1)`

 = `2 sin^-1 (1)`

= `2 xx pi/2`

= `pi`

Hence, I = `pi`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 31 | पृष्ठ १६५

संबंधित प्रश्‍न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×