Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
उत्तर
Let I = `int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
= `int_0^(pi/2) (sinx/cosx)/(1 + "m"^2 (sin^2x)/(cos^2x)) "d"x`
= `int_0^(pi/2) (sinx/cosx)/((cos^2x + "m"^2 sin^2x)/cos^2x) "d"x`
= `int_0^(pi/2) (sin x cos x)/(cos^2x + "m"^2 sin^2x) "d"x`
= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x + "m"^2 sin^2x) "d"x`
= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x (1 - "m"^2)) "d"x`
Put sin2x = t
2 sin x cos x dx = dt
sin x cos x dx = `"dt"//2`
Changing the limits we get,
When x = 0
∴ t = sin20 = 0
When x = `pi/2`
∴ t = `sin^2 pi/2` = 1
∴ I = `1/2 int_0^1 "dt"/(1 - (1 - "m"^2)"t")`
I = `1/2 int_0^1 "dt"/(1 + ("m"^2 - 1)"t")`
= `1/2 [(log [1 + "m"^2 - 1)"t")/("m"^2 - 1)]_0^1`
= `1/(2("m"^2 - 1)) [log(1 + "m"^2 - 1) - log(1)]`
= `(log|"m"^2|)/(2("m"^2 - 1))`
Hence, I = `(log|"m"^2|)/(2("m"^2 - 1)) = (log|"m"|)/("m"^2 - 1)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.