मराठी

Evaluate the following: md∫0π2tanx1+m2tan2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

बेरीज

उत्तर

Let I = `int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

= `int_0^(pi/2) (sinx/cosx)/(1 + "m"^2 (sin^2x)/(cos^2x)) "d"x`

= `int_0^(pi/2) (sinx/cosx)/((cos^2x + "m"^2 sin^2x)/cos^2x) "d"x`

= `int_0^(pi/2) (sin x cos x)/(cos^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x (1 - "m"^2)) "d"x`

Put sin2x = t

2 sin x cos x dx = dt

sin x cos x dx = `"dt"//2`

Changing the limits we get,

When x = 0

∴ t = sin20 = 0

When x = `pi/2`

∴ t = `sin^2  pi/2` = 1

∴ I = `1/2 int_0^1  "dt"/(1 - (1 - "m"^2)"t")`

I = `1/2 int_0^1 "dt"/(1 + ("m"^2 - 1)"t")`

= `1/2 [(log [1 + "m"^2 - 1)"t")/("m"^2 - 1)]_0^1`

= `1/(2("m"^2 - 1)) [log(1 + "m"^2 - 1) - log(1)]`

= `(log|"m"^2|)/(2("m"^2 - 1))`

Hence, I = `(log|"m"^2|)/(2("m"^2 - 1)) = (log|"m"|)/("m"^2 - 1)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 30 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×