Advertisements
Advertisements
प्रश्न
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
पर्याय
`"a"/2`
`"a"/2 int_0^"a" "f"(x)"d"x`
`int_0^"a" "f"(x)"d"x`
`"a" int_0^"a" "f"(x)"d"x`
उत्तर
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to `"a"/2 int_0^"a" "f"(x)"d"x`.
Explanation:
Since I = `int_0^"a" "f"(x) * "g"(x)"d"x`
= `int_0^"a" "f"("a" - x) "g"("a" - x)"d"x`
= `int_0^"a" "f"(x)("a" - "g"(x))"d"x`
= `"a" int_0^"a" "f"(x) "d"x - int_0^"a" "f"(x) * "g"(x)"d"x`
= `"a" int_0^"a" "f"(x)"d"x - 1`
or 1 = `"a"/2 int_0^"a" "f"(x)"d"x`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.