मराठी

Evaluate ∫ 4 1 ( 1 + X + E 2 X ) D X as Limit of Sums. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.

बेरीज

उत्तर

`I = int_1^4 (1 + x +e^(2x)) dx = int_1^4 (1+x) dx + int _1^4 e^(2x) dx`

`= I_1 +I_2`
 

`h = (b-a)/n = (4-1)/n = 3/n `

`I_1 = int_1^4 (1 + x) dx = lim_(n->oo)[3/n[f(1) + f(1 +3/n) + ....... f (1 +((n-1))/n 3)]]`

` = 3"lim_(n-> oo) [1/n[(1 + 1) +(1+(1+3/n)+....)(1+((n-1))/n3)]]`

` = 3"lim_(n-> oo) [(2n)/n + 1/n [0.(3/n)+1(3/n)+....(n-1) 3/n]]`

` = 3"lim_(n-> oo) [2 + 1/n^2 [3 + 2(3) + .... (n -1 )3]]`

` = 3"lim_(n-> oo) [2 +3/n^2 [((n-1)n)/2]]`

` = 3["lim_(n-> oo) (2+3/2(1-1/n))]`

`=3(2+3/2)=6 +9/2=21/2`

`I_2 = int_1^4 e^(2x) dx `

`I_2 = "lim_(n-> oo) [3/n[f(1)+......+f(1+((n-1))/n3)]]`

` = "lim_(n-> oo) [3/n[e^2 + e^(2(1+3/n)) + ......e^(2(1+((n-1))/n 3)]]]`

`= 3e^2 "lim_(n -> oo )[1/n[1 + e^(2 (3/n))+....e^(2(3((n-1))/n))]]`

` = 3e^2 lim_(n -> oo ) 1/n [(e^(2(3/n)^n) -1)/(e^(2(3/n)^n)-1) ]`

` = 3e^2 lim_(n -> oo ) 1/n[(e^6 -1)/(e^(6/n) -1)]`

` = 3e^2(e^6 - 1) "lim_(n -> oo) (1/n)/(e^(6/n)-1)`

`=3e^2 (e^6 - 1) "lim_(n -> oo )((-1)/n^2)/(e^(6/n)((-1)/n^2)xx6)`

`=1/2e^2 (e^6-1)= (e^8 - e^2 )/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


`int dx/(e^x + e^(-x))` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×