मराठी

Evaluate the Following Integrals as Limit of Sums: ∫ 3 1 ( 3 X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

उत्तर

We have,

\[\int_a^b f\left( x \right)dx = \lim_{h \to 0} \left\{ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left[ \left( a + \left( n - 1 \right)h \right) \right] \right\}\]

Here, a = 1, b = 3,  f(x) = 3x2 + 1 and

\[h = \frac{3 - 1}{n} = \frac{2}{n} \Rightarrow nh = 2\]

\[\therefore \int_1^3 \left( 3 x^2 + 1 \right)dx\]
\[ = \lim_{h \to 0} h \left\{ f\left( 1 \right) + f\left( 1 + h \right) + f\left( 1 + 2h \right) + . . . + f\left[ 1 + \left( n - 1 \right)h \right] \right\}\]
\[ = \lim_{h \to 0} h \left\{ \left[ 3 \times 1^2 + 1 \right] + \left[ 3 \times \left( 1 + h \right)^2 + 1 \right] + \left[ 3 \times \left( 1 + 2h \right)^2 + 1 \right] + . . . + \left[ 3 \times \left( 1 + \left( n - 1 \right)h \right)^2 + 1 \right] \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ 1 + \left( 1 + 2h + h^2 \right) + \left( 1 + 4h + 2^2 h^2 \right) + . . . + \left( 1 + 2\left( n - 1 \right)h + \left( n - 1 \right)^2 h^2 \right) \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ n + 2\left( 1 + 2 + . . . + \left( n - 1 \right) \right)h + \left( 1^2 + 2^2 + . . . + \left( n - 1 \right)^2 \right) h^2 \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left[ 4n + 6 \times \frac{n\left( n - 1 \right)}{2}h + 3 \times \frac{\left( n - 1 \right)n\left( 2n - 1 \right)}{6} h^2 \right]\]
\[= \lim_{h \to 0} \left[ 4nh + 6 \times \frac{nh\left( nh - h \right)}{2} + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4nh + 3 \times nh\left( nh - h \right) + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4 \times 2 + 3 \times 2 \times \left( 2 - h \right) + 3 \times \frac{\left( 2 - h \right) \times 2 \times \left( 2 \times 2 - h \right)}{6} \right]\]
\[ = 8 + 6 \times \left( 2 - 0 \right) + \frac{\left( 2 - 0 \right) \times 2 \times \left( 4 - 0 \right)}{2}\]
\[ = 8 + 12 + 8\]
\[ = 28\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.6 | Q 33 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×