Advertisements
Advertisements
Question
Evaluate the following integrals as limit of sums:
Solution
We have,
\[\int_a^b f\left( x \right)dx = \lim_{h \to 0} \left\{ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left[ \left( a + \left( n - 1 \right)h \right) \right] \right\}\]
Here, a = 1, b = 3, f(x) = 3x2 + 1 and
\[\therefore \int_1^3 \left( 3 x^2 + 1 \right)dx\]
\[ = \lim_{h \to 0} h \left\{ f\left( 1 \right) + f\left( 1 + h \right) + f\left( 1 + 2h \right) + . . . + f\left[ 1 + \left( n - 1 \right)h \right] \right\}\]
\[ = \lim_{h \to 0} h \left\{ \left[ 3 \times 1^2 + 1 \right] + \left[ 3 \times \left( 1 + h \right)^2 + 1 \right] + \left[ 3 \times \left( 1 + 2h \right)^2 + 1 \right] + . . . + \left[ 3 \times \left( 1 + \left( n - 1 \right)h \right)^2 + 1 \right] \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ 1 + \left( 1 + 2h + h^2 \right) + \left( 1 + 4h + 2^2 h^2 \right) + . . . + \left( 1 + 2\left( n - 1 \right)h + \left( n - 1 \right)^2 h^2 \right) \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ n + 2\left( 1 + 2 + . . . + \left( n - 1 \right) \right)h + \left( 1^2 + 2^2 + . . . + \left( n - 1 \right)^2 \right) h^2 \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left[ 4n + 6 \times \frac{n\left( n - 1 \right)}{2}h + 3 \times \frac{\left( n - 1 \right)n\left( 2n - 1 \right)}{6} h^2 \right]\]
\[= \lim_{h \to 0} \left[ 4nh + 6 \times \frac{nh\left( nh - h \right)}{2} + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4nh + 3 \times nh\left( nh - h \right) + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4 \times 2 + 3 \times 2 \times \left( 2 - h \right) + 3 \times \frac{\left( 2 - h \right) \times 2 \times \left( 2 \times 2 - h \right)}{6} \right]\]
\[ = 8 + 6 \times \left( 2 - 0 \right) + \frac{\left( 2 - 0 \right) \times 2 \times \left( 4 - 0 \right)}{2}\]
\[ = 8 + 12 + 8\]
\[ = 28\]
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int dx/(e^x + e^(-x))` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.