English

Evaluate the Following Integrals as Limit of Sums: ∫ 3 1 ( 3 X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Solution

We have,

\[\int_a^b f\left( x \right)dx = \lim_{h \to 0} \left\{ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left[ \left( a + \left( n - 1 \right)h \right) \right] \right\}\]

Here, a = 1, b = 3,  f(x) = 3x2 + 1 and

\[h = \frac{3 - 1}{n} = \frac{2}{n} \Rightarrow nh = 2\]

\[\therefore \int_1^3 \left( 3 x^2 + 1 \right)dx\]
\[ = \lim_{h \to 0} h \left\{ f\left( 1 \right) + f\left( 1 + h \right) + f\left( 1 + 2h \right) + . . . + f\left[ 1 + \left( n - 1 \right)h \right] \right\}\]
\[ = \lim_{h \to 0} h \left\{ \left[ 3 \times 1^2 + 1 \right] + \left[ 3 \times \left( 1 + h \right)^2 + 1 \right] + \left[ 3 \times \left( 1 + 2h \right)^2 + 1 \right] + . . . + \left[ 3 \times \left( 1 + \left( n - 1 \right)h \right)^2 + 1 \right] \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ 1 + \left( 1 + 2h + h^2 \right) + \left( 1 + 4h + 2^2 h^2 \right) + . . . + \left( 1 + 2\left( n - 1 \right)h + \left( n - 1 \right)^2 h^2 \right) \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ n + 2\left( 1 + 2 + . . . + \left( n - 1 \right) \right)h + \left( 1^2 + 2^2 + . . . + \left( n - 1 \right)^2 \right) h^2 \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left[ 4n + 6 \times \frac{n\left( n - 1 \right)}{2}h + 3 \times \frac{\left( n - 1 \right)n\left( 2n - 1 \right)}{6} h^2 \right]\]
\[= \lim_{h \to 0} \left[ 4nh + 6 \times \frac{nh\left( nh - h \right)}{2} + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4nh + 3 \times nh\left( nh - h \right) + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4 \times 2 + 3 \times 2 \times \left( 2 - h \right) + 3 \times \frac{\left( 2 - h \right) \times 2 \times \left( 2 \times 2 - h \right)}{6} \right]\]
\[ = 8 + 6 \times \left( 2 - 0 \right) + \frac{\left( 2 - 0 \right) \times 2 \times \left( 4 - 0 \right)}{2}\]
\[ = 8 + 12 + 8\]
\[ = 28\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.6 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.6 | Q 33 | Page 111

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int dx/(e^x + e^(-x))` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×