Advertisements
Advertisements
Question
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Solution
We know that `int_"a"^"b" "f"(x) "d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
For I = `int_0^2 (x^2 + 3) "d"x`
We have a = 0 and b = 2
I = `int_00^2 (x^2 + 3) "d"x`
Here, a = 0, b = 2 and h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`
⇒ nh = 2
And f(x) = `(x^2 + 3)`
∴ I = `int_0^2 (x^2 + 3)"d"x = lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`
= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) "f"("rh")`
= `lim_("h" -> 0) "h" sum_("r" = 0)^("n" - 1) (3 + "r"^2"h"^2)`
= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n" - 1)("n" - 1 + 1)(2"n" - 2 + 1))/6)]`
= `lim_("h" -> 0) "h"[3"n" + "h"^2 ((("n"^2 - "n")(2"n" - 1))/6)]`
= `lim_("h" -> 0) "h" [3"n" + "h"^2/6 (2"n"^3 - 3"n"^2 + "n")]`
= `lim_("h" -> 0) [3"nh" + (2"n"^3"h"^3 - 3"n"^2"h"^2 * "h" + "nh" * "h"^2)/6]`
= `lim_("h" -> 0) [3.2 + (2.2^3 - 3.2^2 * "h" + 2 * "h"^2)/6]`
= `6 + 16/6`
= `26/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.