English

Evaluate the following as limit of sum: ed∫02exdx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`

Sum

Solution

We know that `int_"a"^"b" "f"(x)"d"x = lim_("n" -> oo) "h" sum_("r" = 0)^("n" - 1) "f"("a" + "rh")`

For I = `int_0^2 "e"^x "d"x`

We have a = 0 and b = 2

∴ h = `("b" - "a")/"n" = (2 - 0)/"n" = 2/"n"`

∴ I = `int_0^2 "e"^x "d"x`

= `lim_("h" -> 0) "h" [1 + "e"^"h" + "e"^(2"h") + ... + "e"^(("n" - 1)"h")]`

= `lim_("h" -> 0) "h" [(1 * ("e"^"h")^"n" - 1)/("e"^"h" - 1)]`

= `lim_("h" -> 0) "h" (("e"^("nh") - 1)/("e"^"h" - 1))`

= `lim_("h" -> 0) (("e"^2 - 1)/("e"^"h" - 1))`

= `"e"^2 lim_("h" -> 0) "h"/("e"^"h" - 1)`

= e2 – 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 28 | Page 165

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×