Advertisements
Advertisements
Question
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Solution
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x}dx\]
\[ = \int\frac{\sqrt{\tan x}}{\frac{\sin x}{\cos x} \times \cos^2 x}dx\]
\[ = \int\frac{\sqrt{\tan x}}{\tan x} \times \sec^2 \text{x dx}\]
\[ = \int\frac{1}{\sqrt{\tan x}} \times \sec^2 \text{x dx}\]
\[ = \int \left( \tan x \right)^{- \frac{1}{2}} \sec^2 x dx\]
\[Let \tan x = t\]
\[ \Rightarrow \sec^2 x = \frac{dt}{dx}\]
\[ \Rightarrow \sec^2 \text{x dx} = dt\]
\[Now, \int \left( \tan x \right)^{- \frac{1}{2}} \sec^2\text{ x dx}\]
\[ = \int t^{- \frac{1}{2}} dt\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ =\text{2} \sqrt{t} + C\]
\[ = 2 \sqrt{\tan x} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.