Advertisements
Advertisements
Question
Solution
\[\int\sec x \cdot \log \left( \text{sec x} + \text{tan x} \right) dx\]
\[ \text{Let log} \left( \sec x + \tan x \right) = t\]
\[ \Rightarrow \frac{\left( \sec x \tan x + \sec^2 x \right)}{\left( \sec x + \tan x \right)} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{\sec x \left( \sec x + \tan x \right)}{\left( \sec x + \tan x \right)} dx = dt\]
\[Now, \int\sec x \cdot \text{log }\left( \sec x + \tan x \right) dx\]
\[ = \ ∫ t . dt\]
\[ = \frac{t^2}{2} + C\]
\[ = \frac{\left[ \text{log} \left( \text{sec x} + \tan x \right) \right]^2}{2} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
`int dx/(e^x + e^(-x))` is equal to ______.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.