Advertisements
Advertisements
Question
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Options
`(a + b)/2 int_a^b f(b - x) dx`
`(a + b)/2 int_a^b f(b + x) dx`
`(b - a)/2 int_a^b f(x) dx`
`(a + b)/2 int_a^b f(x) dx`
Solution
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to `underline((a + b)/2 int_a^b f(x) dx)`.
Explanation:
Let `I = int_a^b x f(x) dx`
`= int_a^b (a + b - x) f(a + b - x) dx` ` ...[because int_a^b f(x) dx = int_a^b f(a + b - x)] dx`
`I = int_a^b f(a + b - x) f(x) dx` ` ... [because f(a + b - x) = f(x) "Given"]`
∴ `I = int_a^b [(a + b) f(x) - x f(x)]dx`
`= (a + b) int_a^b f(x) dx - int_a^b x f(x) dx`
= `(a + b) int_a^b f(x) dx - 1`
∴ `2I = (a + b) int_a^b f(x) dx`
∴ `I = (a + b)/2 int_a^b f(x) dx`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.