English

If f (a + b - x) = f (x), then ∫abxf(x)dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.

Options

  • `(a + b)/2 int_a^b f(b - x)  dx`

  • `(a + b)/2 int_a^b f(b + x)  dx`

  • `(b - a)/2 int_a^b f(x)  dx`

  • `(a + b)/2 int_a^b f(x)  dx`

MCQ
Fill in the Blanks

Solution

If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to `underline((a + b)/2 int_a^b f(x)  dx)`.

Explanation:

Let `I = int_a^b x  f(x)  dx`

`= int_a^b (a + b - x) f(a + b - x) dx`        ` ...[because int_a^b f(x) dx = int_a^b f(a + b - x)]  dx`

`I = int_a^b f(a + b - x) f(x)  dx`             ` ... [because f(a + b - x) = f(x) "Given"]`

∴ `I = int_a^b [(a + b) f(x) - x f(x)]dx`

`= (a + b) int_a^b f(x)  dx - int_a^b  x  f(x)  dx`

= `(a + b) int_a^b f(x)  dx - 1`

∴ `2I = (a + b) int_a^b  f(x) dx`

∴ `I = (a + b)/2 int_a^b f(x) dx`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 354]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 43 | Page 354

RELATED QUESTIONS

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×