Advertisements
Advertisements
Question
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Solution
Let I = `int e^x ((1 - sin x)/(1 + cos x))`dx
`= int e^x [(1 - 2 sin x/2 cos x/2)/(2 sin^2 x/2)]`dx
`= int e^x (1/2 cosec^2 * x/2 - cot x/2)`dx
`= - int cot x/2 e^x dx + 1/2 int e^x cosec^2 x/2 dx`
`= - [cot x/2 * e^x - int - 1/2 cosec^2 x/2 e^x dx] + 1/2 int cosec x/2 * e^x dx`
`= - e^x cot x/2 - 1/2 int cosec^2 x/2 * e^x dx + 1/2 int cosec^2 x/2 * e^x dx`
`= - e^x cot x/2`
`therefore int_(pi/2)^pi e^x ((1 - sin x)/(1 + cos x))`dx
`= - [e^x cot x/2]_(pi/2)^pi`
`= - [pi cot pi/2 - e^(pi/2) cot pi/4]`
`= - 0 + e^(pi/2) * 1`
`= e^(pi/2)`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
`int dx/(e^x + e^(-x))` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.