English

Evaluate ∫1^3(e^(2-3x)+x^2+1)dx as a limit of sum. - Mathematics

Advertisements
Advertisements

Question

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.

Sum

Solution 1

Here, a = 1, b = 3 and f(x)=e23x+x2+1.

nh=ba=31=2

We know

`int_a^b f(x)dx=lim_(h->0)h{f(a)+f(a+h)+f(a+2h+....+f[a+(n-1)h])}`

Now,

f(a)=f(1)=e23×1+12+1

f(a+h)=f(1+h)=e23(1+h)+(1+h)2+1

f(a+2h)=f(1+2h)=e23(1+2h)+(1+2h)2+1

.

.

.

f[a+(n1)h]=f[1+(n1)h]=e23[1+(n1)h]+[1+(n1)h]2+1

Adding these equations, we get

f(a)+f(a+h)+f(a+2h)+...+f[a+(n1)h]=[e23×1+12+1]+[e23×(1+h)+(1+h)2+1]

+[e23×(1+2h)+(1+2h)2+1]+...

+{e23[1+(n1)h]+[1+(n1)h]2+1}

`therefore int_1^3(e^(2-3x)+x^2+1)dx`

`=lim_(h->0)h[e^2.(e^(-3)+e^(-3(1+h))`

`+e^(-3(1+2h))+....+e^(3(1+(n-1)h)))]+lim_(h->0)h[1^2`

`+(1+h)^2+(1+2h)^2+.....+[1+(n-1)^2h]]+lim_(h->0)h[1+1+1+...+1]`

`=lim_(h->0)h{e^2xx(e^-3(1-e^(3nh))/(1-e^(-3h)))}`

`+lim_(h->0)h{(1+1+1+...+1)+2h[1+2+3+.....+(n-1)]`

`+h^2(1^2+2^2+3^2+.....+(n-1)^2)}lim_(h->0)h(1+1+1+...+1)`

`=lim_(h->0)h{(e^(-1)(1-e^(-6)))/(1-e^(-3h))}+lim_(h->0)h[n+2hxx((n-1)n)/2+h^2xx((n-1)n(2n-1))/6]+lim_(h->0)hn`

`=lim_(h->0)h{(e^(-1)(1-e^(-6)))/(1-e^(-3h))}+lim_(h->0)h[2nh+(nh-h)nh+((nh-1)nh(2nh-1))/6]`

`=1/e(1-1/e^6)xx(lim_(h->0)e^(3h))/(3xxlim_(h->0)((e^(3h)-1)/(3h)))+lim_(h->0)[2xx2+((2-h)xx2+(2-h)xx2xx(2xx2-h))/6]`

`=1/e(1-1/e^6)xx1/(3xx1)+(4+4+8/3)`

`=1/(3e)(1-1/3^6)+32/3`

shaalaa.com

Solution 2

Let f(x) = `int (e^(2-3x) + x^2 +1) dx`  `("where" lim_(x->3))`

Here h = `2/n`

`= lim_(h->0) h [f(1) + f(1 + h) + f(1 + 2h) + .... + f(1 + (n-1)h)]`   


`= lim_(h->0) h [(e^-1 + 2) + (e^(-1-3h) +2 + 2h + h^2) + ... (e^(-1-6h) + 2 + 4h + 4h^2) + .... + .....(e^(-1-3(n-1)h) + 2 + 2(n-1)h + (n-1)^2 + h^2)]`


`= lim_(h->0) h [e^-1 (1 + e^-3h + e^-6h + ......+e^(-3(n-1)h) + 2n + 2h (1 + 2+...+(n-1)) + h^2(1^2 +2^2 + .... + (n-1)^2)]`


`=lim_(h->0) h [e^1  (e^(-3nh) - 1)/(e^(-3n) - 1) .  + 2nh + 2 (nh (nh - n))/2 + (nh (nh - h)(2nh - h))/6]`

`= e^-1  (e^-6 - 1)/-3 + 4 + 4 + 8/3`

`= -e^-1  (e^-6 - 1)/3 + 32/3`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


What is the derivative of `f(x) = |x|` at `x` = 0?


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×