English

Evaluate the definite integral: ∫0π2cos2xdxcos2x+4sin2x - Mathematics

Advertisements
Advertisements

Question

Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`

Sum

Solution

Let `I = int_0^(pi/2) (cos^2 x )/(cos^2 x + 4 sin^2 x)`dx

`int_0^(pi/2) (cos^2 x)/(cos^2 x + 4(1 - cos^2 x))`dx

`= int_0^(pi/2) (cos^2x)/(4 - 3 cos^2 x)`dx

`= - 1/3 int_0^(pi//2)  (4 - 3 cos^2 x - 4)/(4 - 3 cos^2 x)`dx

`= - 1/3 int_0^(pi/2) (1 - 4/(4 - 3 cos^2 x))`dx

`= - 1/3 int_0^(pi/2) 1 * dx + 4/3 int_0^(pi/2) dx/(4 - 3 cos^2 x)`

`= - 1/3 (pi/2) + 4/3 int_0^(pi/2) (sec^2x)/(4 sec^2 x - 3)`dx

`= - pi/6 + 4/3 int_0^(pi/2) (sec^2 x)/(4 (1 + tan^2 x - 3))`dx

⇒ Put tan x = t

sec2 x dx = dt

When x = 0, t = 0 and when x = `pi/2, t = oo`

I = `- pi/6 + 4/3 int_0^oo dt/(4(1 + t^2) - 3)`

`= pi/6 + 4/3 int_0^oo dt/(4t^2 + 1)`

`= - pi/6 + 4/3 * 1/4 int_0^oo dt/(t^2 + 1/4)`

`= - pi/6 + 1/3 * 2 [tan^-1  t/(1//2)]_0^oo`

`= - pi/6 + 2/3 * [tan^-1 2t]_0^oo`

`= - pi/6 + 2/3 [tan^-1 oo - tan^-1 0]`

`= - pi/6 + 2/3 * [pi/2 - 0]`

`= - pi/6 + pi/3`

`= pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 353]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 27 | Page 353

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×