Advertisements
Advertisements
Question
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Solution
Let `I = int_0^(pi/2) (cos^2 x )/(cos^2 x + 4 sin^2 x)`dx
`int_0^(pi/2) (cos^2 x)/(cos^2 x + 4(1 - cos^2 x))`dx
`= int_0^(pi/2) (cos^2x)/(4 - 3 cos^2 x)`dx
`= - 1/3 int_0^(pi//2) (4 - 3 cos^2 x - 4)/(4 - 3 cos^2 x)`dx
`= - 1/3 int_0^(pi/2) (1 - 4/(4 - 3 cos^2 x))`dx
`= - 1/3 int_0^(pi/2) 1 * dx + 4/3 int_0^(pi/2) dx/(4 - 3 cos^2 x)`
`= - 1/3 (pi/2) + 4/3 int_0^(pi/2) (sec^2x)/(4 sec^2 x - 3)`dx
`= - pi/6 + 4/3 int_0^(pi/2) (sec^2 x)/(4 (1 + tan^2 x - 3))`dx
⇒ Put tan x = t
sec2 x dx = dt
When x = 0, t = 0 and when x = `pi/2, t = oo`
I = `- pi/6 + 4/3 int_0^oo dt/(4(1 + t^2) - 3)`
`= pi/6 + 4/3 int_0^oo dt/(4t^2 + 1)`
`= - pi/6 + 4/3 * 1/4 int_0^oo dt/(t^2 + 1/4)`
`= - pi/6 + 1/3 * 2 [tan^-1 t/(1//2)]_0^oo`
`= - pi/6 + 2/3 * [tan^-1 2t]_0^oo`
`= - pi/6 + 2/3 [tan^-1 oo - tan^-1 0]`
`= - pi/6 + 2/3 * [pi/2 - 0]`
`= - pi/6 + pi/3`
`= pi/6`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integrals as limit of sums:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.