Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^4 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 x \right)^2 dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 - \cos2x}{2} \right)^2 dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - 2\cos2x + \cos^2 2x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos4x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \frac{1}{4} \left[ \sin2x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{32} \left[ \sin4x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{3}{8}\left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \frac{1}{4}\left( 0 - 0 \right) + \frac{1}{32}\left( 0 - 0 \right)\]
\[Hence\ I = \frac{3\pi}{8}\]
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int dx/(e^x + e^(-x))` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.