English

Π / 2 ∫ − π / 2 Sin 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Solution

\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^4 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 x \right)^2 dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 - \cos2x}{2} \right)^2 dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - 2\cos2x + \cos^2 2x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos4x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \frac{1}{4} \left[ \sin2x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{32} \left[ \sin4x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{3}{8}\left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \frac{1}{4}\left( 0 - 0 \right) + \frac{1}{32}\left( 0 - 0 \right)\]
\[Hence\ I = \frac{3\pi}{8}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 24 | Page 95

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


`int dx/(e^x + e^(-x))` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×