Advertisements
Advertisements
Question
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
Solution
Let I = `int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
= `int_(pi/3)^(pi/2) sqrt(2cos^2 x/2)/(2sin^2 x/2)^(5/2) "d"x`
= `int_(pi/3)^(pi/2) (sqrt(2) cos x/2)/((2)^(5/2) sin^5 x/2) "d"x`
= `1/4 int_(pi/3)^(pi/2) (cos x/2)/(sin^5 x /2) "d"x`
Put `sin x/2` = t
⇒ `1/2 cos x/2 "d"x` = dt
⇒ `cos x/2 "d"x` = 2dt
Changing the limits, we have
When x = `pi/3`
`sin pi/6` = t
∴ t = `1/2`
When x = `pi/2`
`sin pi/4` = t
∴ t = `1/sqrt(2)`
∴ I = `1/4 xx 2 int_(1/2)^(1/sqrt(2)) "dt"/"t"^5`
= `1/2 xx (- 1/4) ["t"^-4]_(1/2)^(1/sqrt(2))`
= `- 1/8 [1/"t"^4]_(1/2)^(1/sqrt(2))`
= ` 1/8 [1/((1/sqrt(2))^4 - (1/(1/2))^4)]`
= `- 1/8 [4 - 16]`
= `- 1/8 xx (-12)`
= `3/2`
Hence, I = `3/2`.
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
Evaluate the following integral:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?