English

Evaluate the following: d∫π3π21+cosx(1-cosx)52 dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`

Sum

Solution

Let I = `int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`

= `int_(pi/3)^(pi/2) sqrt(2cos^2  x/2)/(2sin^2  x/2)^(5/2)  "d"x`

= `int_(pi/3)^(pi/2) (sqrt(2) cos  x/2)/((2)^(5/2) sin^5   x/2)  "d"x`

= `1/4 int_(pi/3)^(pi/2)  (cos  x/2)/(sin^5  x /2)  "d"x`

Put `sin  x/2` = t

⇒ `1/2 cos  x/2 "d"x` = dt

⇒ `cos  x/2 "d"x` = 2dt

Changing the limits, we have

When x = `pi/3`

`sin  pi/6` = t

∴ t = `1/2`

When x = `pi/2`

`sin  pi/4` = t

∴ t = `1/sqrt(2)`

∴ I = `1/4 xx 2 int_(1/2)^(1/sqrt(2)) "dt"/"t"^5`

= `1/2 xx (- 1/4) ["t"^-4]_(1/2)^(1/sqrt(2))`

= `- 1/8 [1/"t"^4]_(1/2)^(1/sqrt(2))`

= ` 1/8 [1/((1/sqrt(2))^4 - (1/(1/2))^4)]`

= `- 1/8 [4 - 16]`

= `- 1/8 xx (-12)`

= `3/2`

Hence, I = `3/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 166]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 41 | Page 166

RELATED QUESTIONS

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


What is the derivative of `f(x) = |x|` at `x` = 0?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×