Advertisements
Advertisements
Question
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Solution
Let I = `int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`
Put x = sin θ
∴ dx = cos θ dθ
Changing the limits, we get
When x = 0
∴ sin θ = θ
∴ θ = 0
When x = `1/2`
∴ sin θ = `1/2`
∴ θ = `pi/6`
∴ I = `int_0^(pi/6) (cos theta "d"theta)/((1 + sin^2theta)sqrt(1 - sin^2theta))`
= `int_0^(pi/6) (cos theta "d"theta)/((1 + sin^2theta) costheta)`
= `int_0^(pi/6) 1/(1 + sin^2theta) "d"theta`
Now, dividing the numerator and denominator by cos2θ, we get
= `int_0^(pi/6) (1/cos^2theta)/(1/(cos^2theta) + (sin^2theta)/(cos^2theta)) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(sec^2theta + tan^2theta) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(1 + tan^2theta + tan^2theta) "d"theta`
= `int_0^(pi/6) (sec^2theta)/(2tan^2theta + 1) "d"theta`
Put tan θ = t
∴ sec2θ dθ = t
Changing the limits, we get
When θ = 0
∴ t = tan 0 = 0
When θ = `pi/6`
∴ t = `tan pi/6 = 1/sqrt(3)`
∴ I = `int_0^(1/sqrt(3)) "dt"/(2"t"^2 + 1)`
= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + 1/2)`
= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + (1/sqrt(2))^2)`
= `1/2 xx 1/(1/sqrt(12)) [tan^-1 "t"/(1/sqrt(12))]_0^(1/sqrt(3))`
= `1/sqrt(2) tan^-1 [sqrt(2)"t"]_0^(1/sqrt(3)`
= `1/sqrt(2) [tan^-1 sqrt(2)/sqrt(3) - tan^-1 0]`
= `1/sqrt(2) tan^-1 sqrt(2/3)`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int dx/(e^x + e^(-x))` is equal to ______.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.