English

Evaluate the following: d∫012dx(1+x2)1-x2 (Hint: Let x = sin θ) - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)

Sum

Solution

Let I = `int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`

Put x = sin θ

∴ dx = cos θ dθ

Changing the limits, we get

When x = 0

∴ sin θ = θ

∴ θ = 0

When x = `1/2`

∴ sin θ = `1/2`

∴ θ = `pi/6`

∴ I = `int_0^(pi/6) (cos theta  "d"theta)/((1 + sin^2theta)sqrt(1 - sin^2theta))`

= `int_0^(pi/6) (cos theta  "d"theta)/((1 + sin^2theta) costheta)`

= `int_0^(pi/6) 1/(1 + sin^2theta)  "d"theta`

Now, dividing the numerator and denominator by cos2θ, we get

= `int_0^(pi/6) (1/cos^2theta)/(1/(cos^2theta) + (sin^2theta)/(cos^2theta)) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(sec^2theta + tan^2theta) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(1 + tan^2theta + tan^2theta) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(2tan^2theta + 1) "d"theta`

Put tan θ = t

∴ sec2θ dθ = t

Changing the limits, we get

When θ = 0

∴ t = tan 0 = 0

When θ = `pi/6`

∴ t = `tan  pi/6 = 1/sqrt(3)`

∴ I = `int_0^(1/sqrt(3)) "dt"/(2"t"^2 + 1)`

= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + 1/2)`

= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + (1/sqrt(2))^2)`

= `1/2 xx 1/(1/sqrt(12)) [tan^-1  "t"/(1/sqrt(12))]_0^(1/sqrt(3))`

= `1/sqrt(2) tan^-1 [sqrt(2)"t"]_0^(1/sqrt(3)`

= `1/sqrt(2) [tan^-1 sqrt(2)/sqrt(3) - tan^-1 0]`

= `1/sqrt(2) tan^-1 sqrt(2/3)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 34 | Page 165

RELATED QUESTIONS

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×