Advertisements
Advertisements
Question
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Solution
`"I" =int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Let sin x - cos x = t
(cos x + sin x) dx = dt
(sin x - cos x)2 = t2
sin2x + cos2x - 2 sin x cos x = t2
⇒ 1 - sin 2x = t2
sin 2x = 1 - t2
`"I" = int "dt"/sqrt(9+16(1-"t"^2)`
` = int "dt"/sqrt(9+16-16t^2)`
` = int "dt"/sqrt(25-16t^2)`
`= int "dt"/sqrt(16(25/16-"t"^2))`
`=1/4 int "dt"/(sqrt((5/4)^2)-t^2)`
`= 1/4sin^-1 "t"/((5/4))`
`=1/4 sin^-1 ((4"t")/5)`
`"I" = 1/4 sin^-1 ((4(sin"x"-cos"x"))/2) + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integrals as limit of sums:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.