English

Evaluate: Int (Sin"X"+Cos"X")/(Sqrt(9+16sin2"X")) "Dx" - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`

Sum

Solution

`"I" =int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`

Let sin x - cos x = t

(cos x + sin x) dx = dt 

(sin x - cos x)2 = t2

sin2x + cos2x - 2 sin x cos x = t2

⇒  1 - sin 2x = t2

sin 2x = 1 - t2

`"I" = int "dt"/sqrt(9+16(1-"t"^2)`

` = int "dt"/sqrt(9+16-16t^2)`

` = int "dt"/sqrt(25-16t^2)`

`= int "dt"/sqrt(16(25/16-"t"^2))`

`=1/4 int "dt"/(sqrt((5/4)^2)-t^2)`

`= 1/4sin^-1  "t"/((5/4))`

`=1/4 sin^-1  ((4"t")/5)`

`"I" = 1/4 sin^-1 ((4(sin"x"-cos"x"))/2) + "C"`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

APPEARS IN

RELATED QUESTIONS

Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×