Advertisements
Advertisements
प्रश्न
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
उत्तर
`"I" =int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Let sin x - cos x = t
(cos x + sin x) dx = dt
(sin x - cos x)2 = t2
sin2x + cos2x - 2 sin x cos x = t2
⇒ 1 - sin 2x = t2
sin 2x = 1 - t2
`"I" = int "dt"/sqrt(9+16(1-"t"^2)`
` = int "dt"/sqrt(9+16-16t^2)`
` = int "dt"/sqrt(25-16t^2)`
`= int "dt"/sqrt(16(25/16-"t"^2))`
`=1/4 int "dt"/(sqrt((5/4)^2)-t^2)`
`= 1/4sin^-1 "t"/((5/4))`
`=1/4 sin^-1 ((4"t")/5)`
`"I" = 1/4 sin^-1 ((4(sin"x"-cos"x"))/2) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
What is the derivative of `f(x) = |x|` at `x` = 0?
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.