मराठी

Evaluate d∫-12(7x-5)dx as a limit of sums - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums

बेरीज

उत्तर

Here a = –1

b = 2

And h = `(2 + 1)/"n"`

i.e, nh = 3 and f(x) = 7x – 5.

Now, we have

`int_(-1)^2 (7x - 5)"d"x = lim_("k" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`

Note that

f(–1) = –7 – 5 = –12

f(–1 + h) = –7 + 7h – 5 = –12 + 7h

f(–1 + (n –1)h) = 7 (n – 1)h – 12.

Therefore, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`

= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`

= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`

= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`

= `7/2(3 - 0) - 12 xx 3`

= `(7 xx 9)/2 - 36`

= `(-9)/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 9 | पृष्ठ १५०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


What is the derivative of `f(x) = |x|` at `x` = 0?


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×