Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
उत्तर
Let I = `int_0^(pi/2) sin 2x tan^-1 (sin x) dx`
`= 2 int_0^(pi/2) sin x cos x tan^-1 (sin x) dx`
Putting sin x = t, cos x dx = dt
When x = 0, t = sin 0 ⇒ t = 0
And when `x = pi/2, t = sin pi/2`
=> t = 1
∴ `I = 2 int_0^1 t tan^-1 t dt`
`= 2 [tan^-1 (t) t^2/2]_0^1 - 2 int_0^1 1/ (1 + t^2)* t^2/2 dt`
`= 2 [t^2/2 tan^-1 (t)]_0^1 - 2/2 int_0^1 (1 + t^2 - 1)/ (1 + t^2) dt`
`= [t^2 tan^-1 (t)]_0^1 - int_0^1 (1 - 1/ (1 + t^2)) dt`
`= [t^2 tan^-1 (t) - t + tan^-1 t]_0^1`
`= tan^-1 (1) - 1 + tan^-1`
`= pi/4 - 1 + pi/4`
`= pi/2 - 1`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.