मराठी

Π / 2 ∫ − π / 2 Sin 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

उत्तर

\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^4 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 x \right)^2 dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 - \cos2x}{2} \right)^2 dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - 2\cos2x + \cos^2 2x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos4x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \frac{1}{4} \left[ \sin2x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{32} \left[ \sin4x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{3}{8}\left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \frac{1}{4}\left( 0 - 0 \right) + \frac{1}{32}\left( 0 - 0 \right)\]
\[Hence\ I = \frac{3\pi}{8}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 24 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1 xe^x dx = 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


What is the derivative of `f(x) = |x|` at `x` = 0?


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×