Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^4 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 x \right)^2 dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 - \cos2x}{2} \right)^2 dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - 2\cos2x + \cos^2 2x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos4x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \frac{1}{4} \left[ \sin2x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{32} \left[ \sin4x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{3}{8}\left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \frac{1}{4}\left( 0 - 0 \right) + \frac{1}{32}\left( 0 - 0 \right)\]
\[Hence\ I = \frac{3\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.