मराठी

Evaluate ∫2−1 (e3x+7x−5) dx as a limit of sums - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums

बेरीज

उत्तर

`int_(-1)^2(e^3x+7x-5)dx`

Here ` f(x)=e^(3x)+7x-5`

a=-1, b=2, h=(b-a)/n =3/n

By defination `int_(-1)^2(e^3x+7x-5)dx=lim_(n->oo)sum_(r=a)1^nh.f(a+rh)`

`lim_(n->oo)sum_(r=a)1^nh.f(-1+rh)=lim_(n->oo)sum_(r=a)1^nh.(e^3(-1+rh)+7(-1+rh)-5)`

`=lim_(n->oo)[h.e^(-3).e^(3h)(1+e^(3h)+3^(6h)+.....+e^(3nh))+7h^2(1+2+3+....+n)-12nh]`

`=lim_(n->oo)[(he^(3h))/(n.e^3)xx(e^(3nh)-1)/(e^(3h)-1)+7h^2(n(n+1))/2-12nh]`

`=lim_(n->oo)[((3e^(3xx3/n))/(n.e^3)xx(e^(3nxx3/n)-1)xx((3h)/(e^(3h)-1))xxn/(3xx3))+63/n^2xx(n(n+1))/2-12xx3]`

Now applying the limit we get

`=(e^9-1)/(3e^3)+63/2-36`

`=(e^9-1)/(3e^3)  - 9/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Panchkula Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×