Advertisements
Advertisements
प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
उत्तर
`int_(-1)^2(e^3x+7x-5)dx`
Here ` f(x)=e^(3x)+7x-5`
a=-1, b=2, h=(b-a)/n =3/n
By defination `int_(-1)^2(e^3x+7x-5)dx=lim_(n->oo)sum_(r=a)1^nh.f(a+rh)`
`lim_(n->oo)sum_(r=a)1^nh.f(-1+rh)=lim_(n->oo)sum_(r=a)1^nh.(e^3(-1+rh)+7(-1+rh)-5)`
`=lim_(n->oo)[h.e^(-3).e^(3h)(1+e^(3h)+3^(6h)+.....+e^(3nh))+7h^2(1+2+3+....+n)-12nh]`
`=lim_(n->oo)[(he^(3h))/(n.e^3)xx(e^(3nh)-1)/(e^(3h)-1)+7h^2(n(n+1))/2-12nh]`
`=lim_(n->oo)[((3e^(3xx3/n))/(n.e^3)xx(e^(3nxx3/n)-1)xx((3h)/(e^(3h)-1))xxn/(3xx3))+63/n^2xx(n(n+1))/2-12xx3]`
Now applying the limit we get
`=(e^9-1)/(3e^3)+63/2-36`
`=(e^9-1)/(3e^3) - 9/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.