Advertisements
Advertisements
प्रश्न
उत्तर
\[\int 4 x^3 \sqrt{5 - x^2} dx\]
\[ = 4\int x^2 \times x \sqrt{5 - x^2} \text{ dx }\]
\[\text{Let 5} - x^2 = t \]
\[ \Rightarrow x^2 = 5 - t\]
\[ \Rightarrow 2x = - \frac{dt}{dx}\]
\[ \Rightarrow \text{x dx} = - \frac{dt}{2}\]
\[Now, 4\int x^2 \times x \sqrt{5 - x^2} \text{ dx }\]
\[ = \frac{4}{- 2} \int\left( 5 - t \right) . \sqrt{t} \text{ dt } \]
\[ = - 2\int5 t^\frac{1}{2} + 2 \int t^\frac{3}{2} \text{ dt }\]
\[ = - 10 \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 2 \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = - \frac{20}{3} t^\frac{3}{2} + \frac{4}{5} t^\frac{5}{2} + C\]
\[ = - \frac{20}{3} \left( 5 - x^2 \right)^\frac{3}{2} + \frac{4}{5} \left( 5 - x^2 \right)^\frac{5}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`