हिंदी

1 ∫ 0 ( X E X + Cos P I X 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 

योग

उत्तर

\[\text{Let }I = \int_0^1 \left( x e^x + \cos \frac{\pi x}{4} \right) d x . Then, \]

\[I = \int_0^1 x e^x dx + \int_0^1 \cos\frac{\pi x}{4} dx\]

\[\text{Integrating first term by parts}\]

\[I = \left\{ \left[ x e^x \right]_0^1 - \int_0^1 1 e^x dx \right\} + \left[ \frac{\sin \frac{\pi x}{4}}{\frac{\pi}{4}} \right]_0^1 \]

\[ \Rightarrow I = \left[ x e^x \right]_0^1 - \left[ e^x \right]_0^1 + \left[ \frac{\sin \frac{\pi x}{4}}{\frac{\pi}{4}} \right]_0^1 \]

\[ \Rightarrow I = e - e + 1 + \frac{4}{\pi} \sin \frac{\pi}{4}\]

\[ \Rightarrow I = 1 + \frac{4}{\pi\sqrt{2}}\]

\[ \Rightarrow I = 1 + \frac{2\sqrt{2}}{\pi}\]

shaalaa.com

Notes

The answer given in the book has some error. The solution here is created according to the question given in the book.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 49 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×