Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
उत्तर
Let I = `int_0^(pi/2) sin 2x tan^-1 (sin x) dx`
`= 2 int_0^(pi/2) sin x cos x tan^-1 (sin x) dx`
Putting sin x = t, cos x dx = dt
When x = 0, t = sin 0 ⇒ t = 0
And when `x = pi/2, t = sin pi/2`
=> t = 1
∴ `I = 2 int_0^1 t tan^-1 t dt`
`= 2 [tan^-1 (t) t^2/2]_0^1 - 2 int_0^1 1/ (1 + t^2)* t^2/2 dt`
`= 2 [t^2/2 tan^-1 (t)]_0^1 - 2/2 int_0^1 (1 + t^2 - 1)/ (1 + t^2) dt`
`= [t^2 tan^-1 (t)]_0^1 - int_0^1 (1 - 1/ (1 + t^2)) dt`
`= [t^2 tan^-1 (t) - t + tan^-1 t]_0^1`
`= tan^-1 (1) - 1 + tan^-1`
`= pi/4 - 1 + pi/4`
`= pi/2 - 1`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integral:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to