हिंदी

∫ 1 √ Tan − 1 X . ( 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]
योग

उत्तर

\[\int\frac{dx}{\sqrt{\tan^{- 1} x} \left( 1 + x^2 \right)}\]
\[Let \tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]

\[Now, \int\frac{dx}{\sqrt{\tan^{- 1} x} \left( 1 + x^2 \right)}\]


\[ = \int \frac{dt}{\sqrt{t}}\]
\[ = \int t^{- \frac{1}{2}} dt\]


\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]


\[ = 2 \sqrt{t} + C\]
\[ = 2 \sqrt{\tan^{- 1} x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 15 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×