Advertisements
Advertisements
प्रश्न
Evaluate the following integrals as limit of sums:
उत्तर
We have,
\[\int_a^b f\left( x \right)dx = \lim_{h \to 0} \left\{ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left[ \left( a + \left( n - 1 \right)h \right) \right] \right\}\]
Here, a = 1, b = 3, f(x) = 3x2 + 1 and
\[\therefore \int_1^3 \left( 3 x^2 + 1 \right)dx\]
\[ = \lim_{h \to 0} h \left\{ f\left( 1 \right) + f\left( 1 + h \right) + f\left( 1 + 2h \right) + . . . + f\left[ 1 + \left( n - 1 \right)h \right] \right\}\]
\[ = \lim_{h \to 0} h \left\{ \left[ 3 \times 1^2 + 1 \right] + \left[ 3 \times \left( 1 + h \right)^2 + 1 \right] + \left[ 3 \times \left( 1 + 2h \right)^2 + 1 \right] + . . . + \left[ 3 \times \left( 1 + \left( n - 1 \right)h \right)^2 + 1 \right] \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ 1 + \left( 1 + 2h + h^2 \right) + \left( 1 + 4h + 2^2 h^2 \right) + . . . + \left( 1 + 2\left( n - 1 \right)h + \left( n - 1 \right)^2 h^2 \right) \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ n + 2\left( 1 + 2 + . . . + \left( n - 1 \right) \right)h + \left( 1^2 + 2^2 + . . . + \left( n - 1 \right)^2 \right) h^2 \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left[ 4n + 6 \times \frac{n\left( n - 1 \right)}{2}h + 3 \times \frac{\left( n - 1 \right)n\left( 2n - 1 \right)}{6} h^2 \right]\]
\[= \lim_{h \to 0} \left[ 4nh + 6 \times \frac{nh\left( nh - h \right)}{2} + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4nh + 3 \times nh\left( nh - h \right) + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4 \times 2 + 3 \times 2 \times \left( 2 - h \right) + 3 \times \frac{\left( 2 - h \right) \times 2 \times \left( 2 \times 2 - h \right)}{6} \right]\]
\[ = 8 + 6 \times \left( 2 - 0 \right) + \frac{\left( 2 - 0 \right) \times 2 \times \left( 4 - 0 \right)}{2}\]
\[ = 8 + 12 + 8\]
\[ = 28\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.