हिंदी

Evaluate the Following Integrals as Limit of Sums: ∫ 3 1 ( 3 X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

उत्तर

We have,

\[\int_a^b f\left( x \right)dx = \lim_{h \to 0} \left\{ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left[ \left( a + \left( n - 1 \right)h \right) \right] \right\}\]

Here, a = 1, b = 3,  f(x) = 3x2 + 1 and

\[h = \frac{3 - 1}{n} = \frac{2}{n} \Rightarrow nh = 2\]

\[\therefore \int_1^3 \left( 3 x^2 + 1 \right)dx\]
\[ = \lim_{h \to 0} h \left\{ f\left( 1 \right) + f\left( 1 + h \right) + f\left( 1 + 2h \right) + . . . + f\left[ 1 + \left( n - 1 \right)h \right] \right\}\]
\[ = \lim_{h \to 0} h \left\{ \left[ 3 \times 1^2 + 1 \right] + \left[ 3 \times \left( 1 + h \right)^2 + 1 \right] + \left[ 3 \times \left( 1 + 2h \right)^2 + 1 \right] + . . . + \left[ 3 \times \left( 1 + \left( n - 1 \right)h \right)^2 + 1 \right] \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ 1 + \left( 1 + 2h + h^2 \right) + \left( 1 + 4h + 2^2 h^2 \right) + . . . + \left( 1 + 2\left( n - 1 \right)h + \left( n - 1 \right)^2 h^2 \right) \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left\{ 3\left[ n + 2\left( 1 + 2 + . . . + \left( n - 1 \right) \right)h + \left( 1^2 + 2^2 + . . . + \left( n - 1 \right)^2 \right) h^2 \right] + n \right\}\]
\[ = \lim_{h \to 0} h\left[ 4n + 6 \times \frac{n\left( n - 1 \right)}{2}h + 3 \times \frac{\left( n - 1 \right)n\left( 2n - 1 \right)}{6} h^2 \right]\]
\[= \lim_{h \to 0} \left[ 4nh + 6 \times \frac{nh\left( nh - h \right)}{2} + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4nh + 3 \times nh\left( nh - h \right) + 3 \times \frac{\left( nh - h \right)nh\left( 2nh - h \right)}{6} \right]\]
\[ = \lim_{h \to 0} \left[ 4 \times 2 + 3 \times 2 \times \left( 2 - h \right) + 3 \times \frac{\left( 2 - h \right) \times 2 \times \left( 2 \times 2 - h \right)}{6} \right]\]
\[ = 8 + 6 \times \left( 2 - 0 \right) + \frac{\left( 2 - 0 \right) \times 2 \times \left( 4 - 0 \right)}{2}\]
\[ = 8 + 12 + 8\]
\[ = 28\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 33 | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×