Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^4 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \sin^2 x \right)^2 dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 - \cos2x}{2} \right)^2 dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - 2\cos2x + \cos^2 2x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 + \cos4x \right) dx\]
\[ = \frac{1}{4} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx - \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2x dx + \frac{1}{8} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos4x\ dx\]
\[ = \frac{3}{8} \left[ x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} - \frac{1}{4} \left[ \sin2x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{32} \left[ \sin4x \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{3}{8}\left( \frac{\pi}{2} + \frac{\pi}{2} \right) - \frac{1}{4}\left( 0 - 0 \right) + \frac{1}{32}\left( 0 - 0 \right)\]
\[Hence\ I = \frac{3\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.