हिंदी

Evaluate d∫-12(7x-5)dx as a limit of sums - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums

योग

उत्तर

Here a = –1

b = 2

And h = `(2 + 1)/"n"`

i.e, nh = 3 and f(x) = 7x – 5.

Now, we have

`int_(-1)^2 (7x - 5)"d"x = lim_("k" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`

Note that

f(–1) = –7 – 5 = –12

f(–1 + h) = –7 + 7h – 5 = –12 + 7h

f(–1 + (n –1)h) = 7 (n – 1)h – 12.

Therefore, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`

= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`

= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`

= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`

= `7/2(3 - 0) - 12 xx 3`

= `(7 xx 9)/2 - 36`

= `(-9)/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १५०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 9 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^1 xe^x dx = 1`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int dx/(e^x + e^(-x))` is equal to ______.


\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


What is the derivative of `f(x) = |x|` at `x` = 0?


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×