Advertisements
Advertisements
प्रश्न
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
उत्तर
Here a = –1
b = 2
And h = `(2 + 1)/"n"`
i.e, nh = 3 and f(x) = 7x – 5.
Now, we have
`int_(-1)^2 (7x - 5)"d"x = lim_("k" -> 0) "h"["f"(-1) + "f"(-1 + "h") + "f"(-1 + 2"h") + ... + (-1 + ("n" - 1)"h")]`
Note that
f(–1) = –7 – 5 = –12
f(–1 + h) = –7 + 7h – 5 = –12 + 7h
f(–1 + (n –1)h) = 7 (n – 1)h – 12.
Therefore, `int_(-1)^2 (7x - 5)"d"x = lim_("h" -> 0) "h"[(-12) + (7"h" - 12) + (14"h" - 12) + ... + (7("n" - 1)"h" - 12)]`
= `lim_("h" -> 0) "h"[7"h"[1 + 2 + ... +("n" - 1)] - 12"n"]`
= `lim_("h" -> 0) "h"[7"h" (("n" - 1)"n")/2 - 12 "n"]`
= `lim_("h" -> 0) [7/2("nh")("nh" - "h") - 12"nh"]`
= `7/2(3 - 0) - 12 xx 3`
= `(7 xx 9)/2 - 36`
= `(-9)/2`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int dx/(e^x + e^(-x))` is equal to ______.
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.