Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{x} + x}\]
\[ = \int\frac{dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[\text{Let 1 }+ \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int\frac{dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[ = \int\frac{2dt}{t}\]
\[ = 2\int\frac{dt}{t}\]
\[ = \text{2 } \text{log} \left|\text{ t }\right| + C\]
\[ = \text{2 }\text{log }\left( 1 + \sqrt{x} \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]