हिंदी

∫ 2 X 4 + 7 X 3 + 6 X 2 X 2 + 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
योग

उत्तर

\[\int\left( \frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} \right)dx\]
\[ = \int \frac{x^2 \left( 2 x^2 + 7x + 6 \right)}{x\left( x + 2 \right)}dx\]
\[ = \int\frac{x\left[ 2 x^2 + 4x + 3x + 6 \right]}{x + 2}dx\]
\[ = \int\frac{x\left( 2x\left( x + 2 \right) + 3\left( x + 2 \right) \right)}{\left( x + 2 \right)}dx\]

`= c x ( (2x+3)(x+2)) / (x+2) dx` 


\[ = \int\left( 2 x^2 + 3x \right)dx\]
` = 2   ∫  x^2 dx + 3∫   x    dx`
\[ = 2\left[ \frac{x^3}{3} \right] + 3\left[ \frac{x^2}{2} \right] + C\]
\[ = \frac{2}{3} x^3 + \frac{3}{2} x^2 + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 19 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×