हिंदी

∫ 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
योग

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{x^4 + x^2 + 1}\]
\[ = \frac{1}{2}\int \frac{2 \text{ dx }}{x^4 + x^2 + 1}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{\left( x^2 + 1 \right) - \left( x^2 - 1 \right)}{x^4 + x^2 + 1} \right)dx\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx - \frac{1}{2}\int\left( \frac{x^2 - 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[I = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx - \frac{1}{2}\int\left( \frac{1 - \frac{1}{x^2}}{x^2 + 1 + \frac{1}{x^2}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 3} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 2 - 1}\]
\[ = \frac{1}{2}\int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{\left( x + \frac{1}{x} \right)^2 - 1^2}\]
\[\text{ Putting x } - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[\text{ Putting x} + \frac{1}{x} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dp\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2} - \frac{1}{2}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{1}{2} \times \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{1}{2 \times 1}\text{ log }\left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) - \frac{1}{4}\text{ log } \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C\]
\[ = \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{x\sqrt{3}} \right) - \frac{1}{4}\text{ log }\left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.31 | Q 4 | पृष्ठ १९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×