हिंदी

∫ X 2 ( X − 1 ) 3 ( X + 1 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\text{ Let } \frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{\left( x - 1 \right)^3} + \frac{D}{x + 1} . . . . . \left( 1 \right)\]
\[ \Rightarrow x^2 = A \left( x - 1 \right)^2 \left( x + 1 \right) + B\left( x - 1 \right)\left( x + 1 \right) + C \left( x + 1 \right) + D \left( x - 1 \right)^3 . . . . . \left( 2 \right)\]
\[\text{ Putting x }= 1 \text{ in }\left( 2 \right), \text{we get}\]
\[1 = 2C\]
\[ \Rightarrow C = \frac{1}{2}\]
\[\text{ Putting x = - 1 in} \left( 2 \right), \text{we get}\]
\[1 = - 8D\]
\[ \Rightarrow D = \frac{- 1}{8}\]

\[\text{ Putting x = 2 in}\left( 2 \right), \text{ we get}\]

\[4 = 3A + 3B + 3C + D\]

\[ \Rightarrow 4 = 3A + 3B + \frac{3}{2} - \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = 4 - \frac{3}{2} + \frac{1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{32 - 12 + 1}{8}\]

\[ \Rightarrow 3A + 3B = \frac{21}{8}\]

\[ \Rightarrow A + B = \frac{7}{8}\]

\[\text{ And putting x = 0 in} \left( 2 \right), \text{ we get}\]

\[0 = A - B + C - D\]

\[ \Rightarrow 0 = A - B + \frac{1}{2} + \frac{1}{8} ..................\left[ \because C = \frac{1}{2}, D = \frac{1}{8} \right]\]

\[ \Rightarrow A - B = - \frac{5}{8}\]

\[\]

 

 

\[\text{ Here, A + B} = \frac{7}{8} \text{ and A - B} = - \frac{5}{8} \Rightarrow A = \frac{1}{8} \text{ and B } = \frac{3}{4}\]

\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]

\[\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} = \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)}\]

\[\text{ Now, integral becomes}\]

\[I = \int\left[ \frac{1}{8\left( x - 1 \right)} + \frac{3}{4 \left( x - 1 \right)^2} + \frac{1}{2 \left( x - 1 \right)^3} - \frac{1}{8\left( x + 1 \right)} \right]dx\]

\[ = \frac{1}{8}\text{ log }\left| x - 1 \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} - \frac{1}{8}\text{ log }\left| x + 1 \right| + C\]

\[ = \frac{1}{8}\text{ log }\left| \frac{x - 1}{x + 1} \right| - \frac{3}{4\left( x - 1 \right)} - \frac{1}{4 \left( x - 1 \right)^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 122 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×