हिंदी

∫ 1 ( X 2 + 2 ) ( X 2 + 5 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)}\]
\[\text{ Putting x}^2 = t\]
\[ \therefore \frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} = \frac{1}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[\text{ Let }\frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A}{t + 2} + \frac{B}{t + 5}\]
\[ \Rightarrow \frac{1}{\left( t + 2 \right) \left( t + 5 \right)} = \frac{A \left( t + 5 \right) + B \left( t + 2 \right)}{\left( t + 2 \right) \left( t + 5 \right)}\]
\[ \Rightarrow 1 = A \left( t + 5 \right) + B \left( t + 2 \right)\]
\[\text{ Putting t = - 5}\]
\[ \therefore 1 = B \left( - 5 + 2 \right)\]
\[ \Rightarrow B = - \frac{1}{3}\]
\[\text{ Putting t = - 2}\]
\[ \therefore 1 = A \left( - 2 + 5 \right) + B \times 0\]
\[ \Rightarrow A = \frac{1}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dx}{x^2 + 2} - \frac{1}{3}\int\frac{dx}{x^2 + 5}\]
\[ = \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2} - \frac{1}{3}\int\frac{dx}{x^2 + \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{3\sqrt{2}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{2}} \right) - \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{x}{\sqrt{5}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 125 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×