Advertisements
Advertisements
प्रश्न
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
योग
उत्तर
\[I = \int\sqrt{x^2 - 2x}dx\]
\[\Rightarrow I = \int\sqrt{x^2 - 2x + 1 - 1}\text{ dx}\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
\[ \Rightarrow I = \int\sqrt{(x - 1 )^2 - 1^2}dx\]
\[ \because \int\sqrt{x^2 - a^2}dx = \frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\text{ ln}\left( \left| x + \sqrt{x^2 - a^2} \right| \right) + c\]
\[ \therefore I = \frac{(x - 1)}{2}\sqrt{(x - 1 )^2 - 1} - \frac{1}{2}\text{ ln}\left| \left( x - 1 \right) + \sqrt{x^2 - 2x} \right| + c\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]