Advertisements
Advertisements
प्रश्न
` ∫ x tan ^2 x dx
योग
उत्तर
\[\int x \tan^2 x\ dx\]
= ∫ x (sec2 x – 1) dx
\[= \int x_I . \sec_{II} ^2 \text{ x dx }- \int \text{ x dx }\]
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
` = x tan - log | sec x | - x^2/2 + C_1 + C_2 ( where C = C_1 + C_2 )`
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
` = x tan - log | sec x | - x^2/2 + C_1 + C_2 ( where C = C_1 + C_2 )`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
` ∫ tan^5 x dx `
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int \cos^5 x\ dx\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]