हिंदी

∫ X Tan 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

 
` ∫  x tan ^2 x dx 
योग

उत्तर

\[\int x \tan^2 x\ dx\]
= ​∫ x (sec2 x – 1) dx
\[= \int x_I . \sec_{II} ^2 \text{ x  dx }- \int \text{ x dx }\]
\[ = x\int \sec^2 x - \int\left\{ \frac{d}{dx}\left( x \right)\int \sec^2 \text{ x  dx } \right\}dx - \frac{x^2}{2} + C_1 \]
\[ = x . \tan x - \int1 . \text{ tan x dx } - \frac{x^2}{2} + C_1 \]
\[ = x \tan x - \text{ log }\left| \sec x \right| - \frac{x^2}{2} + C_1 + C_2 \]
`   = x tan - log    | sec x |  - x^2/2 + C_1  + C_2    ( where    C = C_1 + C_2 )`
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 32 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cos^5 x\ dx\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×