Advertisements
Advertisements
प्रश्न
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
योग
उत्तर
\[\text{ Let I } = \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}}dx\]
\[\text{ Putting sin}^{- 1} x = t\]
\[ \Rightarrow \frac{dx}{\sqrt{1 - x^2}} = dt\]
\[ \therefore I = \int t^3 \cdot dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C......... \left( \because t = \sin^{- 1} x \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ sec^6 x tan x dx `
\[\int \sin^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int \tan^4 x\ dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]