हिंदी

∫ Tan − 1 ( √ X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
योग

उत्तर

\[\text{ Let I }= \int \tan^{- 1} \sqrt{x} \text{ dx }\]
\[ = \int \frac{\sqrt{x} . \tan^{- 1} \sqrt{x}\text{  dx}}{\sqrt{x}}\]
\[\text{ Let } \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} \text{ dx }= dt\]
\[ = \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int t_{II} . \tan^{- 1}_I \left( t \right)  \text{  dt }\]
\[ = 2 \left[ \tan^{- 1} t\int\text{  t dt  }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int \text{ t dt } \right\}dt \right]\]
\[ = 2 \left[ \tan^{- 1} \left( t \right) . \frac{t^2}{2} - \int \frac{1}{1 + t^2} . \frac{t^2}{2}dt \right]\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int \frac{t^2}{1 + t^2} dt\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int \left( \frac{1 + t^2 - 1}{1 + t^2} \right)dt\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int dt + \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) . t^2 - t + \tan^{- 1} \left( t \right) + C \left( \because \sqrt{x} = t \right)\]
\[ = \tan^{- 1} \left( \sqrt{x} \right) . x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]
\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 48 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \log_{10} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×