हिंदी

∫ 1 √ a 2 + B 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
योग

उत्तर

\[\int\frac{dx}{\sqrt{a^2 + b^2 x^2}}\]
\[ = \int\frac{dx}{\sqrt{b^2 \left( \frac{a^2}{b^2} + x^2 \right)}}\]
\[ = \frac{1}{b}\int\frac{dx}{\sqrt{x^2 + \left( \frac{a}{b} \right)^2}}\]
\[ = \frac{1}{b} \text{  log }\left| x + \sqrt{x^2 + \frac{a^2}{b^2}} \right| + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| x + \frac{\sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{  log }\left| \frac{bx + \sqrt{b^2 x^2 + a^2}}{b} \right| \right] + C\]
\[ = \frac{1}{b}\left[ \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \text{ log b }\right] + C\]
\[ = \frac{1}{b} \text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| - \frac{\log b}{b} + C\]
\[\text{  let C} - \frac{\log b}{b} = C'\]
\[ = \frac{1}{b}\text{ log }\left| bx + \sqrt{b^2 x^2 + a^2} \right| + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.14 | Q 6 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×