Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{\cos4x - \cos2x}{\sin4x - \sin2x} \right)dx\]
\[ = \int\frac{- 2\sin\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}{2\cos\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}dx \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \text{and} \sin A - \sin B = 2\cos \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \right]\]
\[ = - \int\frac{\sin 3x}{\cos 3x}dx\]
\[ = - \int\tan 3x dx\]
\[ = \frac{- \text{ln }\left| \sec 3x \right|}{3} + C\]
\[ = \frac{1}{3} \text{ln} \left( \left| \text{sec 3x} \right| \right)^{- 1} + C\]
\[ = \frac{1}{3} \text{ln }\left| \cos 3x \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]