हिंदी

∫ Cos 4 X − Cos 2 X Sin 4 X − Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
योग

उत्तर

\[\int\left( \frac{\cos4x - \cos2x}{\sin4x - \sin2x} \right)dx\]
\[ = \int\frac{- 2\sin\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}{2\cos\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}dx \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \text{and} \sin A - \sin B = 2\cos \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \right]\]
\[ = - \int\frac{\sin 3x}{\cos 3x}dx\]
\[ = - \int\tan 3x dx\]
\[ = \frac{- \text{ln }\left| \sec 3x \right|}{3} + C\]
\[ = \frac{1}{3} \text{ln} \left( \left| \text{sec 3x} \right| \right)^{- 1} + C\]
\[ = \frac{1}{3} \text{ln }\left| \cos 3x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 30 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×